22 research outputs found

    Ballistic Flash Characterization: Penetration and Back-face Flash

    Get PDF
    The Air Force is extremely concerned with the safety of its people, especially those who are flying aircraft. Aircrew members flying combat missions are concerned with the chance that a fragment from an exploding threat device may penetrate into the airframe to possibly ignite a fire onboard the aircraft. One concern for vulnerability revolves around a flash that may occur when a projectile strikes and penetrates an aircraft\u27s fuselage. When certain fired rounds strike the airframe, they break into fragments called spall. Spall and other fragmentation from an impact often gain enough thermal energy to oxidize the materials involved. This oxidation causes a flash. To help negate these incidents, analysts must be able to predict the flash that can occur when a projectile strikes an aircraft. This research directly continues AFIT work for the 46th Test Group, Survivability Analysis Flight, by examining models to predict the likelihood of penetration of a fragment fired at a target. Empirical live-fire fragment test data are used to create an empirical model of a flash event. The resulting model provides an initial back-face flash modeling capability that can be implemented in joint survivability analysis models

    Role of substrate quality on the performance of semipolar (11 2 - 2) InGaN light-emitting diodes

    Get PDF
    We compare the optical properties and device performance of unpackaged InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) emitting at ∼430 nm grown simultaneously on a high-cost small-size bulk semipolar (11 2 - 2) GaN substrate (Bulk-GaN) and a low-cost large-size (11 2 - 2) GaN template created on patterned (10 1 - 2) r-plane sapphire substrate (PSS-GaN). The Bulk-GaN substrate has the threading dislocation density (TDD) of ∼ and basal-plane stacking fault (BSF) density of 0 cm-1, while the PSS-GaN substrate has the TDD of ∼2 × 108cm-2 and BSF density of ∼1 × 103cm-1. Despite an enhanced light extraction efficiency, the LED grown on PSS-GaN has two-times lower internal quantum efficiency than the LED grown on Bulk-GaN as determined by photoluminescence measurements. The LED grown on PSS-GaN substrate also has about two-times lower output power compared to the LED grown on Bulk-GaN substrate. This lower output power was attributed to the higher TDD and BSF density

    An Investigation into the Poor Survival of an Endangered Coho Salmon Population

    Get PDF
    To investigate reasons for the decline of an endangered population of coho salmon (O. kisutch), 190 smolts were acoustically tagged during three consecutive years and their movements and survival were estimated using the Pacific Ocean Shelf Tracking project (POST) array. Median travel times of the Thompson River coho salmon smolts to the lower Fraser River sub-array were 16, 12 and 10 days during 2004, 2005 and 2006, respectively. Few smolts were recorded on marine arrays. Freshwater survival rates of the tagged smolts during their downstream migration were 0.0–5.6% (0.0–9.0% s.e.) in 2004, 7.0% (6.2% s.e.) in 2005, and 50.9% (18.6% s.e.) in 2006. Overall smolt-to-adult return rates exhibited a similar pattern, which suggests that low freshwater survival rates of out-migrating smolts may be a primary reason for the poor conservation status of this endangered coho salmon population

    John Milton’s Of Education and the Humanities in College Education

    No full text

    Assessment of effective mitigation and prediction of the spread of SARS-CoV-2 in Germany using demographic information and spatial resolution

    Get PDF
    Non-pharmaceutical interventions (NPIs) are important to mitigate the spread of infectious diseases as long as no vaccination or outstanding medical treatments are available. We assess the effectiveness of the sets of non pharmaceutical interventions that were in place during the course of the Coronavirus disease 2019 (Covid-19) pandemic in Germany. Our results are based on hybrid models, combining SIR-type models on local scales with spatial resolution. In order to account for the age-dependence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we include realistic prepandemic and recently recorded contact patterns between age groups. The implementation of non-pharmaceutical interventions will occur on changed contact patterns, improved isolation, or reduced infectiousness when, e.g., wearing masks. In order to account for spatial heterogeneity, we use a graph approach and we include high-quality information on commuting activities combined with traveling information from social networks. The remaining uncertainty will be accounted for by a large number of randomized simulation runs. Based on the derived factors for the effectiveness of different non-pharmaceutical interventions over the past months, we provide different forecast scenarios for the upcoming time
    corecore